



2373-OSE-SPD-EA-005-D0 Part L Compliance REPORT Rev 0

> CI STRUCTURES LTD 62 Upper Clanbrassil Street, Dublin 8, Ireland. Typical Sports Hall Part L Evaluation Report



Gilligan's Lane, Town Hall Rd, Claremorris, Co. Mayo. www.oseng.ie

### **Document History**

Paper copies are valid only on the day they are printed. Contact the author if you are in any doubt about the accuracy of this document.

### **Document Identification**

| Document Code       | Document Title                    | Date     | Author |
|---------------------|-----------------------------------|----------|--------|
| 2374-OSE-SPD-EA-005 | Mt Mercy Part L Compliance Report | 20.11.23 | КВ     |

### **Revision History**

| Rev Number | Rev Date   | Release / Summary of Changes | Author |
|------------|------------|------------------------------|--------|
| P03.00     | 29-11-2023 | Issue for Information        | GOS    |

#### **Reference Documents**

Please see the following documents for more information:

| Document Number | Document Name                                                   | Version |
|-----------------|-----------------------------------------------------------------|---------|
| N/A             | Sprung Building Layout                                          | N/A     |
| N/A             | Mt Mercy Building Layout                                        | N/A     |
| N/A             | Sprung Foundation & Ring beam Details                           | N/A     |
| N/A             | Section Drawing Walls & Roof                                    | N/A     |
| N/A             | U-Value Modelling Information- Passivate Energy<br>Consultants. | N/A     |

### **Distribution List**

This document has been distributed to:

| Name           | Position | Company           | Action          |
|----------------|----------|-------------------|-----------------|
| Francis Fullen | Client   | CI Structures Ltd | For Information |

This document contains proprietary information belonging to OSENG Limited and shall be used only for the purpose for which it was supplied. It shall not be copied, reproduced or otherwise used, nor shall such information be furnished in whole or in part to others, except in accordance with the terms of any agreement under which it was supplied or with the prior written consent of OSENG Limited and shall be returned upon request.

# Contents

OSENG

| 1.0 Intro | oduction                                                  | .4 |
|-----------|-----------------------------------------------------------|----|
| 2.0       | Methodology                                               | .6 |
| 2.1 0     | Geometry                                                  | .6 |
| 2.2 E     | Environmental Conditions and Weather Data                 | .6 |
| 2.3 Buil  | ding Fabric                                               | .6 |
| 2.4 Calc  | ulation Methods                                           | .6 |
| 2.5 Inte  | rnal Gains                                                | .7 |
| 2.6 Elec  | trical Services                                           | .7 |
| 2.7 Meo   | chanical Services                                         | .7 |
| 3.0 F     | Results                                                   | .8 |
| Append    | lix 1. Part L Compliance BRIRL Document1                  | .0 |
| Append    | lix 2. U-Values References1                               | .1 |
| Append    | lix 3. Concept Building Floor Plan1                       | .5 |
| Append    | lix 4. Passivate Energy Consultants U-Value Calculations1 | .6 |

# **1.0 Introduction**

This report has been prepared to determine Part L energy compliance and solar gain limit checks under Building Regulations 2017: Technical Guidance Document L - Buildings other than Dwellings for a proposed new Build Sports Centre Facility in Ireland.



Building Part L Compliance Model (Simplified Building Energy Model [SBEM]):

Note the building is simplified for Part L Energy modelling as per Simplified Building Energy Model Guide. This particularly applies to the buildings sloped "mansard" type roof style, average heights are taken across this space to simplify the geometry for Part L in line with SBEM National Energy Assessment Procedure (NEAP) Modelling Guide.

### Part L Requirements for New Builds in Ireland.

The requirements for the Conservation of Fuel and Energy in buildings in Ireland, as detailed in the latest Non-Domestic Part L Regulations, include specific values for the Carbon Performance Coefficient (CPC), Maximum Permitted Energy Performance Coefficient (MPEPC), and Renewable Energy Ratio (RER). The CPC is a measure of the building's carbon emissions relative to a standard reference building, and it needs to be minimized to comply with energy efficiency standards. The MPEPC sets a cap on the allowed energy performance of a building, ensuring that it does not exceed a specified limit, which is critical for maintaining energy efficiency. The RER, on the other hand, assesses the proportion of energy used by the building that is derived from renewable sources, with a higher ratio indicating greater use of sustainable energy. These values are essential in ensuring that buildings meet the Nearly Zero Energy Building (NZEB) standards, focusing on reduced carbon emissions, optimized energy performance, and a significant reliance on renewable energy sources.

In Ireland, for new buildings other than dwellings, the specific values for the Maximum Permitted Energy Performance Coefficient (MPEPC), Maximum Permitted Carbon Performance Coefficient (MPCPC), and Renewable Energy Ratio (RER) are as follows:

• MPEPC: The value of the MPEPC should be no greater than 1.0. This coefficient is calculated based on the primary energy consumption of the proposed building, divided by that of a reference building.

- MPCPC: The MPCPC is set at a maximum value of 1.15. This coefficient is derived from comparing the calculated CO2 emission rate of the proposed building with that of a reference building.
- RER: For buildings achieving an MPEPC of 1.0 and an MPCPC of 1.15, an RER of 0.20 is required (20% of buildings energy delivered from renewables), a very significant level of energy provision from renewable energy technologies. The RER is the ratio of primary energy from renewable sources to the total primary energy as defined and calculated in the Non-domestic Energy Assessment Procedure (NEAP).

### Solar Gain Limit Specific Requirements:

The following guidance applies to all buildings, irrespective of whether they are airconditioned or not. The intention is to limit solar gains during the summer period to either:

- reduce the need for air-conditioning; or
- reduce the installed capacity of any air conditioning system that is installed.

For the purposes of Part L, reasonable provision for limiting solar gain through the building fabric would be demonstrated by showing that for each space in the building that is either occupied or mechanically cooled, the solar gains through the glazing aggregated over the period from April to September inclusive are no greater than would occur through one of the following glazing systems with a defined total solar energy transmittance (g-value) calculated according to I.S. EN 410: 2011.

- For every space that is defined in NEAP database as being side lit, the reference case is an east-facing façade with full width glazing to a height of 1.0m. having a framing factor of 10 per cent and a normal solar energy transmittance (g-value) of 0.68. For every space that is defined in the NEAP as being top lit, and whose average zone height is not greater than 6m. the reference case is a horizontal roof of the same total area that is 10% glazed as viewed from the inside out and having roof lights that have a framing factor of 25% and a normal solar energy transmittance (g-value) of 0.68.
- For every space that is defined in the NEAP database as being top lit and whose average zone height is greater than 6m, the reference case is a horizontal roof of the same total area that is 20% glazed as viewed from the inside out and having roof-lights that have a framing factor of 15% and a normal solar energy transmittance (g value) of 0.46.

Note:

The assessment of solar gain in is not an assessment of the internal comfort condition of the building as many other factors have a bearing on comfort e.g., room loads, thermal capacity, ventilation provisions. CIBSE TM 52 provide recommendations for new buildings and adaptation strategies, and this has been calculated separately in the Overheating Analysis Report prepared for this project.

# 2.0 Methodology

# 2.1Geometry

A dynamic thermal model of the building was built within Integrated Environmental Solutions Software (Version 2023.0.1.0) to determine compliance with Part L of the Building Regulations.

The building layout, including room locations, orientation, window and door positions and openable areas, shading and other geometry, was based on latest CAD drawings provided by the architect as of 20.11.2023.

# 2.2 Environmental Conditions and Weather Data

For the purposes of Part L Compliance, the building is assumed to be in Dublin, and the SBEM (Simplified Energy Building Model) weather data set for Dublin was applied to the model to simulate weather conditions. Dublin is the standard requirement for weather data to fulfil Part L requirements.

# 2.3 Building Fabric

Based on preliminary specifications provided and by using the Part L elemental U-Values (based on a new build specification), for the purpose of the Part L Compliance Assessment the following U-Values have been assigned to the building:

| ID        | Category             | Description                            | U value<br>(W/m²·K) | G-Value<br>Glazing |
|-----------|----------------------|----------------------------------------|---------------------|--------------------|
| DOOR      | Door                 | External Doors                         | 1.6                 |                    |
| STD_EXTW  | External Window      | Triple Glazing                         | 0.9                 | 0.36               |
| STD_ROOFL | Rooflight            | 10mm Single glazed<br>with 10mm cavity | 2.2                 | 0.30*              |
| STD_FLO1  | Ground/Exposed Floor | Floor                                  | 0.15                |                    |
| STD_ROOF  | Roof                 | Sloped Roof                            | 0.26                |                    |
| STD_WAL1  | External Wall        | Ext Wall                               | 0.18                |                    |

These values should be considered minimum targets as the reference Part L building uses these as a baseline. The references for the assigned u-values are provided in Appendix 2. It is noted based on provided data sheets these values may bettered upon in detailed design and construction phase, however, for preliminary Part L compliance some redundancy has been applied to provide flexibility if required in the detailed design phase.

\*A low g-value is required to sky lights to meet the solar gain limitation for this space.

Building Air Infiltration Rate: 2.8 m3/hr@50 PA.

# **2.4 Calculation Methods**

All modelling and simulations were carried out in the IES Virtual Environment software suite version 2023.0.1.0. The following applications were utilised to help compile the results:

- SunCast: To determine effect of solar gains and solar shading.
- VE Compliance SBEMie: To carry out Part L Compliance Calculations

# **2.5 Internal Gains**

Occupancy and Equipment data for all rooms were based on NCM (national calculation methodology) templates as required by Part L of the Building Regulations.

# **2.6 Electrical Services**

Lighting efficiencies are assumed to be approximately 110 lumens/circuit watt throughout the building, due to the absence of a full lighting design been carried out, this is a reasonable assumption based on modern LED technology.

Daylight dimming was applied to rooms which have good exposure to natural lighting (Sports Hall, Offices). Absence detection controls were applied to all toilets, corridors, changing rooms stores etc. A manual on/Auto off presence control system was applied to Offices and Meeting Rooms.

# 2.7 Mechanical Services

As no design for mechanical systems have been carried out it is assumed that the following several different HVAC systems serve the building, these include:

- System 1 LTHW Heating Air Source Heat Pump with Radiators/Radiant Panels:
  - o Minimum SCOP: 3.0
  - Mechanical Ventilation with 75% Efficiency Plate Heaty Exchanger to sports hall, changing rooms and offices.
  - Extract Ventilation to Toilets
- System 2 DHW:
  - o Dedicated Domestic Hot Water Heat Pump
  - o 1000 Litre Storage Capacity Factory Insulated Cylinder
  - o Minimum SCOP: 2.0

All efficiencies for building services plant are outlined in the Part L Compliance Report BRIRL output document appended to this report.

This would have to be reviewed on a project-by-project basis by Engineering Consultant.

2.1

# 3.0Results

OSENG

### Primary Energy and CO2 Emissions, Renewable Energy Ratio.

Overall Result: Pass

| Primary Energy Consumption, CO2 Emissions, and Renewable Energy Ratio |                     |  |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
| The compliance criteria in the TGD-L have been met.                   |                     |  |  |  |  |  |  |
| Calculated CO2 emission rate from Reference building                  | 91.5 kgCO2/m2.annum |  |  |  |  |  |  |
| Calculated CO2 emission rate from Actual building                     | 48 kgCO2/m2.annum   |  |  |  |  |  |  |
| Carbon Performance Coefficient (CPC)                                  | 0.52                |  |  |  |  |  |  |
| Maximum Permitted Carbon Performance Coefficient (MPCPC)              | 1.15                |  |  |  |  |  |  |
| Calculated primary energy consumption rate from Reference building    | 472.1 kWh/m2.annum  |  |  |  |  |  |  |
| Calculated primary energy consumption rate from Actual building       | 271 kWh/m2.annum    |  |  |  |  |  |  |
| Energy Performance Coefficient (EPC)                                  | 0.57                |  |  |  |  |  |  |
| Maximum Permitted Energy Performance Coefficient (MPEPC)              | 1                   |  |  |  |  |  |  |
| Renewable Energy Ratio (RER)                                          | 0.43                |  |  |  |  |  |  |
| Minimum Renewable Energy Ratio                                        | 0.1                 |  |  |  |  |  |  |

### **Building Fabric.**

All new constructions apart from skylights are either equal or better than reference building which help in achieving cost optimal performance and we therefore are compliant with Part L of the Building Regulations. The skylights are compensated in the weighted average u-values.

**Overall Result:** Pass

## Heat Transmission through Building Fabric

| Element                                                                                                                                                                                                                                  | Ua-Limit          | Ua-Calc | U <sub>i-Limit</sub>                              | Ui-Calc                   | Surface with maximum U-value*                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|---------------------------------------------------|---------------------------|--------------------------------------------------------------------------------|--|
| Walls**                                                                                                                                                                                                                                  | 0.21              | 0.15    | 0.6                                               | 0.15                      | MT000001_W1                                                                    |  |
| Floors (ground and exposed)                                                                                                                                                                                                              | 0.21              | 0.15    | 0.6                                               | 0.15                      | MT000001_F                                                                     |  |
| Pitched roofs                                                                                                                                                                                                                            | 0.16              | -       | 0.3                                               | -                         | "No heat loss pitched roofs"                                                   |  |
| Flat roofs                                                                                                                                                                                                                               | 0.2               | 0.16    | 0.3                                               | 0.16                      | MT000001_C                                                                     |  |
| Windows, roof windows, and rooflights                                                                                                                                                                                                    | 1.6               | 1.61    | 3                                                 | 1.8                       | MT000002_C_O0                                                                  |  |
| Personnel doors                                                                                                                                                                                                                          | 1.6               | 0.89    | 3                                                 | 0.89                      | MT000002_W1_O4                                                                 |  |
| Vehicle access & similar large doors                                                                                                                                                                                                     | 1.5               | -       | 3                                                 | -                         | "No ext. vehicle access doors"                                                 |  |
| High usage entrance doors                                                                                                                                                                                                                | 3                 | -       | 3                                                 | -                         | "No ext. high usage entrance doors"                                            |  |
| U <sub>a-Limit</sub> = Limiting area-weighted average U-values [W/(<br>U <sub>a-Calc</sub> = Calculated area-weighted average U-values [N                                                                                                | m2K)]<br>N/(m2K)] |         | U <sub>i-Limit</sub> =<br>U <sub>i-Calc</sub> = 0 | Limiting in<br>Calculated | dividual element U-values [W/(m2K)]<br>I individual element U-values [W/(m2K)] |  |
| * There might be more than one surface with the maximum U-value. ** Automatic U-value check by the tool does not apply to curtain walls whose area-weighted average and individual limiting standards are 1.8 and 3 W/m2K, respectively. |                   |         |                                                   |                           |                                                                                |  |
| Air Permeability                                                                                                                                                                                                                         | Upper             | Limit   |                                                   |                           | This Building's Value                                                          |  |
| m3/(h.m2) at 50 Pa                                                                                                                                                                                                                       | 5                 |         |                                                   |                           | 2.8                                                                            |  |

### **Building Services and Lighting**

All new building services and lighting surpass the requirements of the minimum Part L requirements and we therefore are compliant.

### Overall Result: Pass

8

### Solar Gain Limits

All rooms comply with the solar gain criteria set out in Part L of the building regulations. Refer to Appendix 1 for details.

Overall Result: Pass

### **Mitigation measures:**

• Sky lights in sports hall require a minimum g-value of 0.3. Recommend a target of at least 0.28.

The specifications required to meet solar gain limits for the sky lights are provided below:

| Project Construction (Glazed: Roof Light)                                                                                  |                 |                         |                     |                       |                                                  |                     |               |                        |                       |                     |                       | -                    |                            |
|----------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|---------------------|-----------------------|--------------------------------------------------|---------------------|---------------|------------------------|-----------------------|---------------------|-----------------------|----------------------|----------------------------|
| scription: Rooflight 2.3                                                                                                   |                 |                         |                     |                       |                                                  |                     |               |                        |                       | ID: STD_F           | RFLT                  | External             | Interna                    |
| rformance: EN-ISO V<br>Net U-value (including frame): 2.3000 W/m <sup>2</sup> -K<br>Net R-value: 0.4569 m <sup>2</sup> K/W | U-value (g      | glass only): 2.         | 1884 W              | /m²·K<br>Vis          | ible light norm                                  | al transmittar      | ке: 0.4       | ]                      |                       |                     |                       |                      |                            |
| Urraces Frame Shading Device (SBEM) Regulations UK D<br>Outside<br>Emissivity: 0.837 Resistance (m <sup>3</sup> K/W):      | 0.              | adianceIES              | ult                 | Inside<br>Emissivity: | 0.8                                              | 37                  | Resistance (n | 1 <sup>2</sup> K/W):   | 0.1000                | ☑ Default           |                       |                      |                            |
| Construction Layers (Outside to Inside):                                                                                   |                 |                         |                     |                       |                                                  |                     |               |                        | S                     | ystem Mater         | rials                 | Project N            | laterials                  |
| Material                                                                                                                   | Thickness<br>mm | Conductivity<br>W/(m·K) | Angular<br>Dependen | Gas                   | Convection<br>Coefficient<br>W/m <sup>2</sup> ·K | Resistance<br>m²K/W | Transmittance | Outside<br>Reflectance | Inside<br>Reflectance | Refractive<br>Index | Outside<br>Emissivity | Inside<br>Emissivity | Visible Light<br>Specified |
| [STD_RF01] Outer Pane                                                                                                      | 6.0             | 1.0600                  | Fresnel             | × -                   | -                                                | 0.0057              | 0.310         | 0.186                  | 0.227                 | 1.526               | 0.837                 | 0.209                | No 🗸                       |
| Cavity                                                                                                                     | 12.0            |                         |                     | ~                     | 2.2396                                           | 0.3056              | -             | 1.50                   | 1.50                  | 100                 | 100                   |                      |                            |
| [STD_RF11] Inner Pane                                                                                                      | 6.0             | 1.0600                  | Fresnel             | × -                   | -                                                | 0.0057              | 0.310         | 0.072                  | 0.072                 | 1.526               | 0.837                 | 0.837                | No 🗸                       |
|                                                                                                                            |                 |                         |                     |                       |                                                  |                     |               |                        |                       |                     |                       |                      |                            |
| Copy Paste Insert Add Delete Flip                                                                                          | Electro         | chromic                 |                     |                       |                                                  |                     |               |                        |                       |                     |                       | M                    | ore Data                   |
| Condensation Analysis Derived Parameters                                                                                   |                 |                         |                     |                       |                                                  |                     |               |                        |                       |                     |                       |                      | 1.000                      |

A datasheet will be required to demonstrate this values can be achieved in final part L compliance calculation.

Note: It is recommended that a separate Daylight Factor calculation is carried out to ensure that recommended daylight levels are been maintained within the space. The Chartered Institute of Building Services Engineers recommend daylight levels within 2-5% Daylight Factor ranges, such targets are likely to achieve in a high amount of hours in a year where artificial lighting may not be required and through daylight sensors in LED lighting can significantly reduce energy usage.

Appendix 1. Part L Compliance BRIRL Document

# **Appendix 2. U-Values References**

### Skylights:

| ID | Component                                                 | Thickness<br>Inches<br>(mm)               | Conductivity<br>Btu·in /<br>ft <sup>2</sup> ·hr·°F<br>(W/m K) | Nominal Resistance<br>hr·ft <sup>2,</sup> °F/Btu<br>(m²K/W)    | Density<br>Ib/ft³<br>(kg/m³) | Specific<br>Heat<br>Btu/lb·°F<br>(J/kg K) |
|----|-----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|------------------------------|-------------------------------------------|
| 1  | Interior Film                                             | -                                         | -                                                             | R-0.7 (0.12 RSI)                                               | -                            | -                                         |
| 2  | Interior Air Space                                        | -                                         | -                                                             | R-0.9 (0.16 RSI)                                               | 0.075 (1.2)                  | 0.24 (1000)                               |
| 3  | Foil-faced Batt Insulation                                | 6", 8" or 9"<br>(152,203,or<br>229)       | -                                                             | R-19, 25 or 30 (3.35,<br>4.49, or 5.28 RSI)                    | 4 (64)                       | 0.20 (850)                                |
| 4  | Exterior Air Space                                        | -                                         | -                                                             | R-0.9 (0.16 RSI)                                               | 0.075 (1.2)                  | 0.24 (1000)                               |
| 5  | Sprung Instant<br>Structures Aluminum<br>Ribs and Purlins | -                                         | 1595 (230)                                                    | -                                                              | 168 (2700)                   | 0.22 (900)                                |
| 6  | Sprung Instant<br>Structures Interior<br>Thermal Cap      | -                                         | 1.73 (0.25)                                                   | -                                                              | 54 (860)                     | 0.48 (2000)                               |
| 7  | Sprung Instant<br>Structures Exterior<br>Aluminum Cap     | -                                         | 1595 (230)                                                    | -                                                              | 168 (2700)                   | 0.22 (900)                                |
| 8  | Nylon Rope                                                |                                           | 1.73 (0.25)                                                   | -                                                              | 51 (820)                     | 0.48 (2000)                               |
| 9  | Fabric<br>The thermal conductivity of                     | c not explicitly mo<br>of small air space | delled, as it provio<br>s including in the i                  | les no additional thermal res<br>nterior and exterior caps was | istance.<br>s found using I  | SO 100077-2                               |
| 10 | Exterior Film                                             | -                                         | -                                                             | R-0.2 (0.03 RSI)                                               | -                            | -                                         |
|    |                                                           |                                           |                                                               | R VALUE - 2.7<br>RSI VALUE - 0.47                              |                              |                                           |

Reference: Morrison Hershfield 2019-04-10 Sprung U-Factor Report



### U-Value calculated by OSEng

### Windows:

Details: Office Space Only

- Colour: Standard single ral
- Glazing: Triple glazing 4T/20/4T U1.0
- System: ASM XT66 Performance Plus
- Includes adaptors for 80mm Kingspan panels
- Hardware
  - Espag handles
    - Restrictor
- Overall U Value U0.9

### Reference: As per client specification.

# External Doors:



Infill: Polyurethane 1.6 W/m2K

**Reference: IDS Doors for Sprung Specification Document** 

# Wall Roof:

| EXTERNAL WALL E                            | Reference<br>standard                          |                             |           |
|--------------------------------------------|------------------------------------------------|-----------------------------|-----------|
| Total area (m²)                            | U-value<br>(undisturbed)<br>W/m <sup>2</sup> K | Heat loss<br>(W/K)          |           |
| 270.18                                     | 0.114                                          | 30.80                       | ISO 6946  |
| 5 X 10" Post length<br>53.636              | Psi-value<br>(W/mK)<br>0.287                   | Heat loss<br>(W/K)<br>15.39 | ISO 10211 |
| Area-weighted avera<br>(W/m <sup>2</sup> k | ISO 6946                                       |                             |           |

### Reference: Sprung System provided specification

| ROOF ELEMENT SPRUNG                                     | Reference standard |           |
|---------------------------------------------------------|--------------------|-----------|
| Total area (m²)<br>Undisturbed U-value (W/m²K)          | 1074.58<br>0.157   | ISO 6946  |
| Roof heat loss (W/K)                                    | 168.71             |           |
| Rafter beam psi-value (W/mK)<br>Total rafter length (m) | 0.376<br>291.74    | ISO 10211 |
| Rafter heat loss (W/K)                                  | 109.69             |           |
| Area-weighted average roof U-<br>value (W/m2K)          | 0.259              | ISO 6946  |

Reference: Sprung System provided specification

Floor:

| BuildDesk<br>Documentation of the com<br>Thermal transmittance (U-<br>Source: own catalog | U 3.4<br>MOUNT MERCY GROUND FLOOR U-VALUE 19<br>hponent<br>-value)<br>jue - SPRUNG SYSTEMS    | 0mm PIR                     | 29.                     | March 2023<br>Page 1/3                         |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|-------------------------|------------------------------------------------|
| INSIDE                                                                                    |                                                                                               |                             |                         |                                                |
|                                                                                           |                                                                                               |                             |                         |                                                |
|                                                                                           |                                                                                               |                             |                         |                                                |
| OUTSIDE                                                                                   |                                                                                               |                             |                         |                                                |
| Assignment: Ground floo                                                                   | or                                                                                            |                             |                         |                                                |
| Manufacturer                                                                              | Name                                                                                          | Thickness<br>[m],<br>number | Lambda (<br>[W/(mK)]    | 2 R<br>[m²K/W]                                 |
| ▼ 1 Rsi   ▼ 1 BS EN 12524   ▼ 2 Xtratherm Limited   ▼ 3 Xtratherm Limited   Rse Rse Rse   | Concrete, Reinforced (with 2% of steel)<br>Thin-R XT/UF Underfloor<br>Thin-R XT/UF Underfloor | 0.1500<br>0.0900<br>0.1000  | 2.500<br>0.022<br>0.022 | 0.1700<br>0.0600<br>4.0909<br>4.5455<br>0.0000 |
| $11 = 0.09 M//m^{2}$                                                                      | Evaluation                                                                                    | 0.3400                      |                         |                                                |

**Reference: Sprung Foundation Specification** 

Appendix 3. Concept Building Floor Plan









Appendix 4. Passivate Energy Consultants U-Value Calculations

| EXTERNAL WALL E                            | Reference<br>standard                          |                             |           |
|--------------------------------------------|------------------------------------------------|-----------------------------|-----------|
| Total area (m²)                            | U-value<br>(undisturbed)<br>W/m <sup>2</sup> K | Heat loss<br>(W/K)          |           |
| 270.18                                     | 0.114                                          | 30.80                       | ISO 6946  |
| <b>5 X 10" Post length</b><br>53.636       | <b>Psi-value</b><br>(W/mK)<br>0.287            | Heat loss<br>(W/K)<br>15.39 | ISO 10211 |
| Area-weighted avera<br>(W/m <sup>2</sup> k | ge wall U-value<br><)                          | 0.171                       | ISO 6946  |

| ROOF ELEMENT SPRUNG                                     | Reference standard   |           |
|---------------------------------------------------------|----------------------|-----------|
| Total area (m²)                                         | al area (m²) 1074.58 |           |
| Undisturbed U-value (W/m²K)                             | 0.157                | ISO 6946  |
| Roof heat loss (W/K)                                    | 168.71               |           |
| Rafter beam psi-value (W/mK)<br>Total rafter length (m) | 0.376<br>291.74      | ISO 10211 |
| Rafter heat loss (W/K)                                  | 109.69               |           |
|                                                         |                      | 4         |
| Area-weighted average roof U-<br>value (W/m2K)          | 0.259                | ISO 6946  |

|                       | Area (m²) | TGD L | Heat loss (W/K) | Design<br>proposal | Heat loss<br>(W/K) |  |
|-----------------------|-----------|-------|-----------------|--------------------|--------------------|--|
| Roof U-value          | 1074.58   | 0.16  | 171.93          | 0.259              | 278.40             |  |
| Wall U-value          | 270.18    | 0.21  | 56.74           | 0.171              | 46.19              |  |
| Ground floor U-value  | 790       | 0.21  | 165.90          | 0.086              | 67.94              |  |
|                       |           |       |                 | Th                 |                    |  |
| Total heat loss (W/K) |           |       | 394.57          |                    | 392.54             |  |

Project: Generic Client: Sprung Systems Element: Roof element Date: 29/03/23 All calculations carried out in accordance with IS EN ISO 10077-2:2017 using the radiosity method. Software: Flixo v.8 validated to IS EN ISO 10077-2







D:\CLIENTS\SPRUNG SYSTEMS\2023\FLIXO FILES\10 X 5 WALL DETAIL.flx

Project: Generic Client: Sprung Systems Element: External wall Date: 29/03/23 All calculations carried out in accordance with IS EN ISO 10077-2:2017 using the radiosity method. Software: Flixo v.8 validated to IS EN ISO 10077-2



 $\theta$ si min= 18.93 °(  $f_{Rsi} = 0.947$   $\phi_{si(50\%)} = 53\%$  $\phi_{100\%} = 94\%$ 



| Material                                  | $\lambda$ [W/(m·K)] | 3     |  |
|-------------------------------------------|---------------------|-------|--|
| Aluminium (Si Allovs)                     | 160.000             | 0.900 |  |
| Aluminium (Si Alloys)                     | 160.000             | 0.100 |  |
| EPDM (ethylene propylene diene monomer)   | 0.250               | 0.100 |  |
| EPDM (ethylene propylene diene monomer)   | 0.250               | 0.900 |  |
| FERMACELL Gipsfaser-Platte                | 0.320               | 0.900 |  |
| KINGSPAN QUADCORE CORE                    | 0.018               | 0.900 |  |
| Knauf Omnifit Stud                        | 0.034               | 0.900 |  |
| Polyvinylchloride (PVC)                   | 0.170               | 0.900 |  |
| Polyvinylchloride (PVC) flexible          | 0.140               | 0.900 |  |
| Softwood 500, typical construction timber | 0.130               | 0.900 |  |
| Unventilated air cavity *                 |                     |       |  |
| * EN ISO 10077-2:2017, 6.4.3/anisotrop    |                     |       |  |



Boundary Condition  $q[W/m^2] \theta[^{\circ}C] R[(m^2 \cdot K)/W]$ 



3

0.100

0.900



# BuildDesk U 3.4

MOUNT MERCY GROUND FLOOR U-VALUE 190mm PIR

Documentation of the component Thermal transmittance (U-value) own catalogue - SPRUNG SYSTEMS Source: Component: MOUNT MERCY GROUND FLOOR

INSIDE



OUTSIDE

Ε

## Assignment: Ground floor

|    |             | Manufacturer                                                        | Name                                                                                          | Thickness<br>[m],<br>number | Lambda<br>[W/(mK)]      | Q           | R<br>[m²K/W]                                   |
|----|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------|------------------------------------------------|
| বব | 1<br>2<br>3 | Rsi<br>BS EN 12524<br>Xtratherm Limited<br>Xtratherm Limited<br>Rse | Concrete, Reinforced (with 2% of steel)<br>Thin-R XT/UF Underfloor<br>Thin-R XT/UF Underfloor | 0.1500<br>0.0900<br>0.1000  | 2.500<br>0.022<br>0.022 | D<br>C<br>C | 0.1700<br>0.0600<br>4.0909<br>4.5455<br>0.0000 |

0.3400

## $U = 0.08 W/(m^2K)$

### Explanation see next page

The physical values of the building materials has been graded by their level of quality. These 5 levels are the following A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party. Q .. A ..

B C D B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party ••

C: Data is entered and validated by the manufacturer or supplier. ..

D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others. ..

E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.



29. March 2023 Page 1/3

# BuildDesk U 3.4

MOUNT MERCY GROUND FLOOR U-VALUE 190mm PIR

Documentation of the component Thermal transmittance (U-value) own catalogue - SPRUNG SYSTEMS Source: Component: MOUNT MERCY GROUND FLOOR

# Slab-on-ground floor according to BS EN ISO 13370

### Input data:

w

| λ | Thermal conductivity [W/(mK)] | 2.00   | (Thermal conductivity of the ground) |
|---|-------------------------------|--------|--------------------------------------|
| А | Floor area [m²]               | 790.00 |                                      |

0.30

- Floor area [m<sup>2</sup>] А
- Р Exposed perimeter [m]
- R<sub>f</sub> Thermal resistance [m<sup>2</sup>K/W] Thickness of walls [m]

109.80 8.696 (see construction layer list)

Kind of edge insulation

| Kino           | d of edge insulation:                   | vertical edge insulation |
|----------------|-----------------------------------------|--------------------------|
| D              | Depth of insulation [m]                 | 0.52                     |
| d <sub>n</sub> | Thickness of insulation [m]             | 0.10                     |
| $R_n$          | Thermal resistance [m <sup>2</sup> K/W] | 2.0                      |

### Intermediate results:

| B'             | Characteristic dimension [m]    | 14.390 |
|----------------|---------------------------------|--------|
| dt             | Equivalent thickness [m]        | 18.113 |
| U <sub>0</sub> | Thermal transmittance [W/(m²K)] | 0.081  |
| $\Delta \Psi$  | Correction term [W/(mK)]        | -0.006 |

| U = 0.08 W/(m²K)          | Thermal Transmittance                     |
|---------------------------|-------------------------------------------|
| L <sub>s</sub> = 63.3 W/K | Steady-state thermal coupling coefficient |



# BuildDesk U 3.4

MOUNT MERCY GROUND FLOOR U-VALUE 190mm PIR

### Documentation of the component

29. March 2023 Page 3/3

### Heat capacity Source: own catalogue - SPRUNG SYSTEMS Component: MOUNT MERCY GROUND FLOOR

#### INSIDE



The list of materials shown below may differ from those in the U-value calculation printout. Only material layers which are used in the heat capacity calculation are listed.

Single material layers shown in the U-value calculation printout may be separated to meet the exclusion criteria:

A .. The total thickness of the layers exceed 0.1 m. B... The mid point in the construction is reached.

For insulation layers the following criteria applies:

C .. An insulating layer is reached (defined as lambda <= 0.08 W/(mK)).

#### OUTSIDE

|   | Name                                    | Thickness<br>[m] | lambda<br>[W/(mK)] | Q | Thermal<br>capacity<br>[kJ/(kgK)] | Q | Density<br>[kg/m³] | Q | Thermal<br>mass<br>kJ/(m²K) | Criteria<br>Exclusion |
|---|-----------------------------------------|------------------|--------------------|---|-----------------------------------|---|--------------------|---|-----------------------------|-----------------------|
|   | Start of calculation - Warm             |                  |                    |   |                                   |   |                    |   |                             |                       |
| 1 | Concrete, Reinforced (with 2% of steel) | 0.1000           | 2.500              | D | 1.00                              | D | 2400.0             | D | 240.0                       | -, -, -               |
| 1 | Concrete, Reinforced (with 2% of steel) | 0.0500           | 2.500              | D | 1.00                              | D | 2400.0             | D | <del>120.0</del>            | A, -, -               |
| 2 | Thin-R XT/UF Underfloor                 | 0.0900           | 0.022              | C | 1.40                              | C | 32.0               | C | 0.0                         | A, -, C               |
| 3 | Thin-R XT/UF Underfloor                 | 0.1000           | 0.022              | С | 1.40                              | C | 32.0               | C | 0.0                         | A, -, C               |
|   | End of calculation - Earth              |                  |                    |   |                                   |   |                    |   |                             |                       |
|   |                                         | 0.3400           |                    |   |                                   |   |                    |   | 240.0                       |                       |

# Heat capacity = 240.0 kJ/(m<sup>2</sup>K)

The following exclusion criteria apply:

- The total thickness of the layers exceed 0.1 m. А ...
- С .. An insulating layer is reached (defined as lambda <= 0.08 W/(mK)).
- Q A The physical values of the building materials has been graded by their level of quality. These 5 levels are the following ...
  - A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party.
- B B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party •••
- С C: Data is entered and validated by the manufacturer or supplier. ... D
  - D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others. ..
  - E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.